Негізгі бет
Алгебра 1
Course: Алгебра 1 > Unit 13
Lesson 6: Factoring quadratics with difference of squares- Квадраттық теңдеулерді жіктеу: Квадраттардың айырымы
- Difference of squares intro
- Factoring difference of squares: leading coefficient ≠ 1
- Factoring difference of squares: analyzing factorization
- Factoring difference of squares: shared factors
- Difference of squares
© 2023 Khan AcademyҚолдану шарттарыҚұпиялылық саясатыCookie Notice
Квадраттық теңдеулерді жіктеу: Квадраттардың айырымы
Learn how to factor quadratics that have the "difference of squares" form. For example, write x²-16 as (x+4)(x-4).
Көпмүшелерді көбейткіштерге жіктеу үшін оларды екі немесе одан көп көпмүшелердің көбейтіндісі түріне келтіру керек. Бұл көпмүшелерді көбейтуге кері амал болып табылады.
In this article, we'll learn how to use the difference of squares pattern to factor certain polynomials. If you don't know the difference of squares pattern, please check out our video before proceeding.
Intro: Difference of squares pattern
Every polynomial that is a difference of squares can be factored by applying the following formula:
Note that and in the pattern can be any algebraic expression. For example, for and , we get the following:
The polynomial is now expressed in factored form, . We can expand the right-hand side of this equation to justify the factorization:
Now that we understand the pattern, let's use it to factor a few more polynomials.
Example 1: Factoring
Both and are perfect squares, since and . In other words:
Since the two squares are being subtracted, we can see that this polynomial represents a difference of squares. We can use the difference of squares pattern to factor this expression:
In our case, and . Therefore, our polynomial factors as follows:
We can check our work by ensuring the product of these two factors is .
Тақырып бойынша біліміңді тексер
Ойлануға арналған сұрақ
Example 2: Factoring
The leading coefficient does not have to equal to in order to use the difference of squares pattern. In fact, the difference of squares pattern can be used here!
This is because and are perfect squares, since and . We can use this information to factor the polynomial using the difference of squares pattern:
A quick multiplication check verifies our answer.
Тақырып бойынша біліміңді тексер
Күрделі есептер
Талқылауға қосылғыңыз келе ме?
Әзірге посттар жоқ.